Nonparametric density estimation for linear processes with infinite variance

نویسندگان

  • Toshio HONDA
  • TOSHIO HONDA
چکیده

We consider nonparametric estimation of marginal density functions of linear processes by using kernel density estimators. We assume that the innovation processes are i.i.d. and have infinite-variance. We present the asymptotic distributions of the kernel density estimators with the order of bandwidths fixed as h = cn−1/5, where n is the sample size. The asymptotic distributions depend on both the coefficients of linear processes and the tail behavior of the innovations. In some cases, the kernel estimators have the same asymptotic distributions as for i.i.d. observations. In other cases, the normalized kernel density estimators converge in distribution to stable distributions. A simulation study is also carried out to examine small sample properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The efficiency of bias-corrected estimators for nonparametric kernel estimation based on local estimating equations

Stuetzle and Mittal for ordinary nonparametric kernel regression and Kauermann and Tutz for nonparametric generalized linear model kernel regression constructed estimators with lower order bias than the usual estimators without the need for devices such as second derivative estimation and multiple bandwidths of di erent order We derive a similar estimator in the context of local multivariate es...

متن کامل

The Efficiency of Bias { Correctedestimators for Nonparametric

Stuetzle and Mittal (1979) for ordinary nonparametric kernel regression and Kauermann and Tutz (1996) for nonparametric generalized linear model kernel regression constructed estimators with lower order bias than the usual estimators, without the need for devices such as second derivative estimation and multiple bandwidths of diierent order. We derive a similar estimator in the context of local...

متن کامل

Nonparametric Estimation for Lévy Models Based on Discrete-Sampling

A Lévy model combines a Brownian motion with drift and a purejump homogeneous process such as a compound Poisson process. The estimation of the Lévy density, the infinite-dimensional parameter controlling the jump dynamics of the process, is studied under a discrete-sampling scheme. In that case, the jumps are latent variables whose statistical properties can in principle be assessed when the f...

متن کامل

Intersection bounds: estimation and inference

We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or equivalently, the value of a linear programming problem with a potentially infinite constraint set. Our approach is especially convenient in models comprised of a continuum of inequalities that are separable in parame...

متن کامل

Nils Lid Hjort , Chris Holmes

The contribution of this book is to collect most recent research of Bayesian nonparametric techniques together, with main emphasis on the use of Dirichlet process. The popularity of Dirichlet process is because that the Dirichlet prior is nonparametric and conjugate, thus presents many opportunities to flexibly model complex data structure. The book incorporates the Bayesian philiosophy into th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006